Thiol-mediated anchoring of ligands to self-assembled monolayers for studies of biospecific interactions.

نویسندگان

  • Kunal V Gujraty
  • Randolph Ashton
  • Sridhar R Bethi
  • Sandesh Kate
  • Christopher J Faulkner
  • G Kane Jennings
  • Ravi S Kane
چکیده

We report a method to immobilize thiol-containing ligands onto self-assembled monolayers (SAMs) of alkanethiolates presenting chloracetylated hexa(ethylene glycol) groups. The chloroacetyl groups react with thiols under mild basic conditions, enabling the stable immobilization of biologically active ligands in a well-defined orientation. These SAMs on gold are well suited for studies of biospecific interactions of immobilized ligands with proteins and cells. As a demonstration, we functionalized these SAMs with thiol-containing derivatives of biotin and benzene sulfonamide and observed the specific binding of neutravidin and carbonic anhydrase, respectively. We also used this method to generate mixed SAMs presenting the Arg-Gly-Asp (RGD) peptide sequence and demonstrated the integrin-mediated adhesion of fibroblast cells to these SAMs. This approach would allow the immobilization of proteins and other sensitive biomolecules and ligands for a wide variety of applications in biotechnology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tailored electroactive nanorods for biospecific cell adhesion and differentiation.

We report a strategy for the fabrication of tailored electroactive nanorod substrates for biospecific studies of cell adhesion and stem cell differentiation; to control the interfacial properties of the nanorods we formed self-assembled monolayers of an electroactive hydroquinone group that is able to chemoselectively immobilize oxyamine tethered ligands.

متن کامل

A renewable, chemoselective, and quantitative ligand density microarray for the study of biospecific interactions.

Novel renewable microarray technology has been developed to immobilize and release carbohydrates and proteins from self-assembled monolayers (SAMs) of electroactive quinone-terminated alkanethiolates on gold surfaces. This method may be applied to a variety of research fields for use in biosensor technology and the generation of renewable and tailored microarrays for biospecific cell-based assays.

متن کامل

A photochemical method for patterning the immobilization of ligands and cells to self-assembled monolayers.

This work describes a chemically well defined method for patterning ligands to self-assembled monolayers (SAMs) of alkanethiolates on gold. This method begins with monolayers presenting a nitroveratryloxycarbonyl (NVOC)-protected hydroquinone which is photochemically irradiated to reveal a hydroquinone group. The resulting hydroquinone is then oxidized to the corresponding benzoquinone, providi...

متن کامل

Corrosion Protection of Copper with Hybrid Sol-Gel Containing 1H-1, 2, 4-triazole-3-thiol

To improve the corrosion protection of copper metal, 0.01M concentration of 1H-1,2,4-triazole-3-thiol (TAT) was incorporated into the hybrid sol-gel monolayers containing 3-glycidoxypropyltrimethoxysilane (GPTMS) and Tetraethoxysilane (TEOS). It was further subjected to hydrolysis and condensation reaction to form a sol-gel matrix. The TAT-doped hybrid sol-gel coating was applied over the c...

متن کامل

Using self-assembled monolayers to model the extracellular matrix.

The extracellular matrix is an insoluble aggregate of large proteins and glycosoaminoglycans that comprises the microenvironment of cells in tissue. The matrix displays a host of ligands that interact with cell-surface receptors to mediate the attachment and spreading of cells and regulate signaling processes. Studies of cell-matrix interactions and downstream signaling processes commonly emplo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 22 24  شماره 

صفحات  -

تاریخ انتشار 2006